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Pattern Formation by Growing Droplets: 
The Touch-and-Stop Model of Growth 
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We investigate a novel model of pattern formation phenomena. In this model 
spherical droplets are nucleated on a substrate and grow at constant velocity; 
when two droplets touch each other they stop their growth. We examine the 
heterogeneous process in which the droplet formation is initiated on randomly 
distributed centers of nucleation and the homogeneous process in which 
droplets are nucleated spontaneously at constant rate. For the former process, 
we find that in arbitrary dimension d the system reaches a jamming state where 
further growth becomes impossible. For the latter process, we observe the 
appearance of fractal structures. We develop mean-field theories that predict 
that the fraction of uncovered material @(t) approaches to the jamming limit as 
�9 ( l ) -~(oo)~exp(Ct  d) for the heterogeneous process and as a power law for 
the homogeneous process. Exact solutions in one dimension are obtained and 
numerical simulations for d = 1-3 are performed and compared with mean-field 
predictions. 
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1. INTRODUCTION 
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possible examples. Understanding the kinetics of their formation is a 
challenging problem of considerable practical and theoretical interest. 

A number of pattern formation phenomena may be described by a 
random sequential adsorption (RSA) model. 1~21 In this model particles are 
placed randomly and sequentially onto a 'substrate and they cannot adsorb 
on top of previously adsorbed ones. RSA processes usually continue until 
a jamming configuration, where further adsorption events are impossible. 
A notable feature of the RSA processes is that the pattern is formed by 
particles of prescribed shape and size which do not change during the 
process. 

Another important class of pattern formation processes is related to 
nucleation and growth phenomena. A toy model of such processes is the 
Kolmogorov or Johnson-Mehl-Avrami model of phase transformation 
kinetics. ~131 In this model, small spherical seeds are nucleated at a constant 
rate per unit volume in the metastable phase and grow at constant velocity 
once formed (homogeneous nucleation) or seeds are nucleated in the meta- 
stable phase on defects (heterogeneous nucleation). Contrary to the RSA 
model, both the size and the shape of droplets change during the evolution 
in this model. 

In this article, we investigate a pattern formation model intermediate 
between the RSA model and the Kolmogorov-Johnson-Mehl-Avrami 
model. We assume that the pattern is formed by growing droplets of 
prescribed spherical shape. The condition of shape persistence modifies the 
rule of growth: when two (or more) droplets touch they stop their growth 
and remain permanently fixed. This model will be called the touch-and- 
stop model. 

In general, the process of droplet formation proceeds either by 
spontaneous nucleation or by growth from the centers of nucleation. We 
consider two models describing these two types of nucleation. In the 
homogeneous nucleation model, vanishingly small spherical droplets are 
nucleated at a constant rate f" per unit volume in the metastable phase and 
then grow at constant velocity V. The heterogeneous nucleation model is 
obtained by placing randomly at time t = 0  nuclei with density y which 
initiate then the phase transformation process. 

A variety of application of the model may be envisioned. The shape 
persistence of the growing droplets may be caused by a number of reasons. 
For example, it may be a strong surface tension that prevents the droplets 
from having any shape different from the spherical one; on the other hand, 
a strong interaction with a substrate may prevent droplets from coalescing. 
Note also that the homogeneous variant of the present touch-and-stop 
model is a generalized dynamic version of the random space-filling-bearing 
model 114"lsl which is in fact a random version of Apollonian packing. ~61 
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It has been speculated that the random space-filling-bearing model may 
mimic a variety of natural phenomena ranging from the motion of matter 
in seismic gaps up to some aspects of turbulence. ~14) However, the 
growth velocity in the random space-filling-bearing model is considered as 
infinitely large. Hence after a nucleation event a droplet touches the closest 
stationary droplet and stops its growth immediately. Moreover, the model 
is nontrivial only if a typical size of the system is finite (e.g., if the process 
takes place in a hole between three touching discs as in the Apollonian 
packing 1~61 or in a strip). On the other hand, our model is well defined for 
infinite systems and probably may mimic the kinetics of a number of 
natural phenomena. 

The rest of this paper is organized as follows. In Section 2, we develop 
a mean-field theory (MFT) for both homogeneous and heterogeneous 
nucleation processes in d dimensions. Both models are solved exactly in 
Section 3. In Section 4, we present the results of numerical simulations, 
compare numerical and exact results in one dimension, and describe the 
geometric structure of final patterns. Finally, we summarize our findings in 
Section 5. 

2. M E A N - F I E L D  A P P R O A C H  

We start by developing a mean-field approximation for a simpler 
heterogeneous variant of the touch-and-stop model. Denote by N ( t ) =  
1 - ~ ( t )  the fraction of material that has not been transformed before time 
t. If we ignore the overlap of growing spheres, we readily obtain N ( t ) =  
yOU(Vt) a, where 12d= rcd/2/F(1 + d/2) is the volume of a d-dimensional unit 
sphere. This is of course an overestimate of N(t) .  First we derive the upper 
and lower estimates for q~(t) by taking into account the reduction of N( t )  
due to the nearest-neighbor interaction. Since the nucleation centers are 
distributed randomly, the nearest-neighbor distance is given by the Hertz 
form (see, e.g., ref. 17) 

p ( r ) = d y f 2 d r  d i e ~.aJ (1) 

So, we find 

d N  Vat a t dyf2ar a-  i e - ; , a J  dr (2) - -~  = dyl2 a v, 

Solving Eq. (2) yields 

qsupp~r(t ) = 1 - 2 - a +  2-ae-;'a'll2vna (3) 

Note that Eq. (3) provides the upper bound for the actual fraction of 
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untransformed material because the nearest-neighbor droplet that was 
implicitly assumed growing all the time before touching with the examined 
one could already be stopped by touching with other droplets. Technically, 
this assumption was made in writing the lower limit of the integral in the 
right-hand side of Eq. (2). 

To derive a lower bound ~n . . . .  (t), one should replace the lower limit 
in the integral in the right-hand side of Eq. (2) by Vt. This accounts for the 
opposite extreme situation when the nearest-neighbor droplet stops 
immediately at t = 0: 

f'- 
d N  dT~ d Vdte_ l d ; ~  drO_ l e_  ~,eJ dr (4) 
dt v, 

From (4) one gets 

~l . . . .  ( t ) = e - ;'oat vt~a (5) 

Observe that the lower bound coincides with the well-known exact 
result obtained for the Kolmogorov-Johnson-Mehl-Avrami nucleation 
and growth model/TM While the lower bound (5) fails to predict a non- 
trivial jammed state, qs~ . . . .  ( ~ ) = 0 ,  the rate of relaxation appears to be 
true. This follows from the well-known Lifshitz argument ~'81 since the 
long-time behavior is governed by a large empty region transforming 
by long-living droplets nucleated near centers of these regions. On the 
other hand, the upper bound (3) predicts a nontrivial jammed state, 
q~upper(OV) = 1 --2 -a, but the approach to the jammed state is too rapid. 

Let us turn now from the upper and lower bounds to the mean-field 
approximation for the touch-and-stop model with heterogeneous nuclea- 
tion. We develop the MFT by more accurate accounting for the touch-and- 
stop process compared to those used previously in deriving Eqs. (3) and 
(5). To this end we introduce the function ~(t), the probability that the 
growth of a droplet has not been stopped before time t. In a mean-field 
spirit, one can estimate ~u(t) as the product of exp[-- 7['2 a( Vt )a], the 
probability that the distance from a droplet to the nearest one is greater 
than Vt, and 

[1 - dTI-2d vd(t  + t') d - t  ~U(t') dt ']  = e x p [ -  dyI2 d vd(t  + t') d-~ ~ ( t ' )  dt ']  

the probabilities that a droplet has not been stopped by droplets nucleated 
in a region between spheres of radii V ( t + t ' )  and V ( t + t ' + d t ' ) .  Multi- 
plying these factors, we find 

~ ( t ) = e x p  --~,F2d(vt)e--dTf2e Vd ( t + t ' )  d - I  tP( t ' )d t '  (6) 
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The fraction of the material which has been transformed before time 
t is 

N ( t ) = d T f 2 a V  a ( t ' )  a - I  ~ ( t ' ) d t '  (7) 

It is worth pointing out that if we assume 7t(t) = 1 as the first approxima- 
tion and then substitute this value into the right-hand side of Eq. (6), we 
arrive at the more accurate result for ~u(t), ~ u ( t ) = e x p [ - - y f 2 d ( 2 V t ) d ] .  By 
inserting this result into Eq. (7), one can rederive the upper bound (3). 
Similarly, by assuming ~u(t)=0 as the first approximation, one can 
rederive the lower bound (5). 

We cannot solve nonlinear integral equation (6) analytically in arbitrary 
dimension. However, in one dimension we have succeeded in finding the 
exact solution of this equation, which reads 

r = 1 - log(2 - e -  2~.v,) (8) 

Nevertheless for arbitrary dimension d it is possible to find an 
approximate solution to the integral equation (6). This can be done by 
replacing the factor ( t+  t ')  d -  ~ in the integrand in Eq. (6) by the factor 
( 2 d - - 1 ) ( t ' )  a - ' .  [Such a replacement may be heuristically justified by 
noting that it would be exact for ~u(t')=const. Also, in one dimension it 
becomes exact since both factors are equal to unity.] Performing this 
replacement, one can recast Eq. (6) into the equation 

d N  
--~-= dyi2 a Vat a -  l exp[ - yt2a(Vt) a -  (2 ' / -  1 ) N(t)]  (9) 

which can be solved exactly to give 

N ( t )  = (2 d -  1 ) - l  log[2 d_  (2 d_  1 ) e-~'a~ v,l~] (10) 

Combining Eqs. (7) and (10), we obtain 

e - ;,ad{ v, ~d 
~ ( t ) -  (11) 

2 d -  (2 d -  1 ) e-~.ael v,l~ 

In one dimension, the approximate solution (I0)-(11) is the exact 
solution of the mean-field equation (6). Numerical solutions of the non- 
linear integral equation (6) for d = 2 ,  3 have revealed a good agreement 
between the approximate solution (10) and the numerical solution to 
Eq. (6), although the latter provides somewhat better agreement with 
Monte Carlo results. 
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We now develop a mean-field approximation for the touch-and-stop 
model with homogeneous nucleation. Let us introduce the function ~u(t, to) 
so that FT'(t ,  t o )d t  o gives the probability that a droplet was nucleated 
during the time interval (to, t o + d t o )  and it is not stopped until time 
t, t > to. Since the number of seeds nucleating in a unit volume during the 
time interval ( t, t + dr) is FoP(t) dt, one has 

~u(t, t )=  ~( t )  (12) 

by the definition. Consider now a droplet which has been nucleated at time 
t o at the origin and which is still growing at time t. Then in the MFT spirit 
we get the following estimate for hu(t, to): 

~(  t, to) = ~(  t ) exp [ _ fl( t _ to)d ( t -- - ~ - - (  } -- to'~ ] 

xexp - a f t  dso ds ~(s ,  S o ) ( t - t o  + S -  So) d - I  

E s: s; } xexp dfl dso ds ~(s ,  s o ) ( s - s o )  d - I  (13) 

where we have introduce the short-hand notation f l= F~Q d V d. The first 
exponential factor in Eq. (13) gives the probability that other droplets have 
not been nucleated in the region covered by the considered droplet. It is 
easily derived if one observes that it is equal to 

exp[  - fl( t - t~ t~ exp { - fl f '  dt' [ ( t - t ~  ( t' - t~ 

where the former factor is the probability that droplets did not nucleate in 
the ball of radius V ( t -  to), centered at the origin, during the time interval 
(0, to); the latter factor is the probability of the same during the time inter- 
val (to, t) in the untransformed part of the ball. The second exponential 
factor in the right-hand side of Eq. (13) estimates the probability that 
droplets nucleated outside of the ball have not stopped our droplet before 
time t. It was derived by using the expression 

s; 1 - d~ dso ds ~(s ,  so)(t - to + s - so) e -  ~ 
o 

[ s: } --exp - d f l d s o  ds gS(s, s o ) ( t - t o + s - s o )  e - I  
o 
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which gives the probability that our droplet would not be stopped by a 
droplet nucleated during the time interval (So, so+dso). Multiplying all 
these factors for all So in the interval (0, t), one obtains the second 
exponential factor of Eq. (13). Finally, the last exponential factor of 
Eq. (13) and the factor r have been introduced to guarantee that the 
basic relation (12) remains manifestly true. 

Equation (13) should be completed by the kinetic equation 

d@ c, ~(t, to)(t-  t o )  d -  1 dto (14) 

which simply follows from the fact that the radii of the droplets nucleated 
at time to and still growing at time t are V( t -  to). 

A notable feature of Eq. (I 3) is its simplicity in one dimension. Indeed, 
combining Eqs. (14) and (13), one can express the right-hand side of (13) 
in terms of ~(t)  only: 

~(t, t o ) = e x p [ - - F V ( t  2 - -  t2)] ~(t)  (15) 

By inserting (15) into (14) we arrive at a closed-form equation for qs(t): 

~t = -2FV@ fo dtoexp[-FV(t2-tZo)] (16) 

with solution 

q~(t)=exp - 2 T V  ds~ exp(-TVs2t) ds2 exp(TVs~) (17) 

An even more remarkable feature is that the analytical solution of the 
mean-field equations for the homogeneous nucleation given by Eqs. (15) 
and (17) turns out to be the exact solution. This will be confirmed in the 
next section, where the exact solution in one dimension will be derived 
rigorously. 

For d >  ! one should solve two nonlinear equations (13)--(14) for two 
unknown functions @(t) and ~'(t, to) simultaneously. One can simplify 
these mean-field equations if, similar to the heterogeneous case, one 
replaces the factor ( t - t o + S - s o ) a - l - ( S - S o )  a-t in the combined 
integral in Eq. (13) by the factor B(S--so)d-L We choose the constant 
B = B(d) satisfying the condition that for constant ~(s, So), after averaging 
on to in the interval (0, t), the replacement becomes exact. This yields the 
following value of constant B, B = (2 d§ 2 _ 2) / (d+ 2 ) -  2. By comparison 
with simulational results, we have found that this replacement leads to 
satisfactory results. Taking into account Eq. (14) and the initial condition 
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~ ( 0 ) =  1, we arrive at the following closed-form equation for the single 
variable ~(t):  

= - d f l  A ~  dto (t - tO) d -  ! 

(18) 

with fl = yf2 d V d and 

= exp( - B) = exp (2  A 
\ 

2 a + 2 -  2) 
d +  2 

Having obtained a solution to Eq. (18), one can further find ~u(t, to) from 
Eq.(14) with initial condition (12). Note also that in one dimension 
Eq. (18) coincides with the exact result (16). 

Analyzing Eq. (18), one can find that in the long-time limit the main 
contribution to the integral is accumulated near the upper limit, to ~ t. 
Computing the integral asymptotically, we find 

d~  
t - 7 - =  - A ~  exp(B~) (19) 

f i t  

The solution to this equation decays as a power law, 

�9 ( t )  ~ t -A  (20)  

with the exponent A = A ( d )  given below Eq.(18). Notice that in one 
dimension A(1 ) =  1 and hence ~ ( t ) ~  t-1: this is the asymptotically exact 
result. In two dimensions our estimate of the exponent A, A ( 2 ) = e - 3 / 2 =  
0.223130 .... turns out to be in surprisingly good agreement with simula- 
tional result A(2 )=  0.22 +0.02 (see Section 4). 

3. EXACT S O L U T I O N S  IN ONE D I M E N S I O N  

It is useful to explore the kinetics of the touch-and-stop model in one 
dimension since exact solutions are possible to obtain in this case. We again 
start by considering a simpler case of the touch-and-stop process with 
heterogeneous nucleation. We assume that nucleation centers are dis- 
tributed uniformly and independently throughout the system with density y. 
Proceeding with the solution, we follow a procedure applied in refs. 19 
and 20 to nucleation and growth processes. Thus we first study an auxiliary 
"one-sided" problem in which nuclei are scattered to the right of the origin 
as in the original problem but no nuclei are placed to the left of the origin. 
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Let ~b(t) be the probability that the origin is untransformed before time t. 
By definition, the origin is transformed in the time interval (t, t + dt) with 
the probability (-dqk/dt)dt .  On the other hand, it happens if the nucleus 
nearest to the origin lies in the space interval (Vt, V t+  Vdt)  [therefore 
nuclei must be absent in the interval (0, Vt)] and the next nearest nucleus 
lies outside the interval (Vt, 2Vt). Hence 

c/~ 
-T dt = - -yV dt exp(--~,Vt) exp ( -yV t )  (~(t) (21) 
dt 

The last factor in Eq. (21) ensures that a second droplet does not prevent 
the first from reaching the origin. Integrating (22) and taking into account 
that initially the system is empty, ~b(0)= 1, we obtain 

qb(t) = exp I - 1 - exp( 2 - ? V t ) ]  (22) 

Let us now return to the original "two-sided" problem. Noting that 
the fraction of untransformed material qs(t) is just the conditional proba- 
bility for a point to be untransformed both from the left and from the right, 
we find the general relation between q~(t) and ~b(t): 

�9 (t)=~b(t) 2 (23) 

So, the volume fraction of untransformed material is 

q~(t) = exp [exp( - 2y Vt) - 1 ] (24) 

In particular, the limiting jammed coverage at d =  1 is equal to ~ ( o v ) =  
e-~=0.367879 .... Notice that it is smaller than the jamming coverage 
predicted by the upper bound (3), ~upp~r(~)=0.5, and larger than the 
jamming coverage predicted by the MFT (8), q ~ M V T ( ~ ) = l - - l o g 2 =  
0.306852 .... Further, the coverage varies exponentially in the long-time 
limit, q s ( t ) - ~ ( o v ) ~ e - l e  -2~'z'. One can observe that the true asymptotic 
decay is slower than that predicted by the upper bound [~ ( t ) -q~ (oo )  
e -4;'~:'/2, s e e  Eq. (3)] and similar to the one predicted by the MFT [ ~ ( t ) -  
~ ( ~ )  me _,~.v,/2, see Eq. (8)]. 

Let us now compute ~(t), the probability that the growth of a droplet 
has not been stopped before time t. It is not difficult to establish that 
~( t )=e-2rv '~ ( t )  2. Here the former factor gives the probability that the 
interval of length 2 Vt which is spanned by a droplet does not contain other 
nuclei. The latter factor ensures that both left and right ends of the droplet 

822/75/3-4-II 
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at time t are untransformed by droplets nucleating from the left and right, 
correspondingly. Using expression (22) for ~b(t), we finally obtain 

~u(t) = exp [exp( - 2y Vt) - 1 - 2~ Vt ] (25) 

From Eq. (25) one can find the density of droplets of length L in the 
jammed configuration, pjam(L). It follows from the general relation 
Pjam(L) dL = ' y ( - d ~ / d t )  art with the constraint L = 2Vt. Thus we find 

pjam(L) = ~,2[1 + exp(-~,L)]  e x p [ e x p ( - T L ) -  1 - T L ]  (26) 

The density of droplets of length L at finite time t, p(L, t), can be now 
written as 

p(L, t ) = p j a m ( L ) O ( 2 V t - L ) + y e x p [ e x p ( - y L ) -  1 - y L ]  6 ( 2 V t - L )  (27) 

where 0 is the Heaviside step function. Making use of Eqs. (26) and (27), one 
can calculate the fraction of untransformed material, 1 - S ~  dLLp(L,  t), 
and reproduce the result given by Eq. (24), thus providing a useful check 
of self-consistency. 

The touch-and-stop mechanism leads to the formation of clusters of 
stationary droplets without intervening gaps. Each cluster contains a 
touching pair of droplets of equal length, resulting from the first collision 
event in the formation of this cluster, and a number of longer droplets 
located to the left and to the right of the pair of shortest droplets. It seems 
possible to find the densities of clusters in the jammed state pjam(L ........ 
L _ 1 , L , L , L ~  ..... L,,), where L ,,> ... > L  I > L = L < L I <  . . .<L, , ,  are 
the consecutive lengths of droplets in a cluster. However, we are able to 
compute these densities only for a few small n and m. 

Consider now the touch-and-stop process with homogeneous nuclea- 
tion in one dimension. It is again convenient to study first an auxiliary 
"one-sided" problem in which nuclei are scattered to the right and to nuclei 
are placed to the left of the origin. We define the probability ~(t) as in the 
heterogeneous problem. Thus, ( - d ~ / d t ) d t  is the probability that the origin 
is transformed during the time interval (t, t + dt) by some droplet. Such a 
droplet could have been nucleated at any point x in the space interval 
(0, Vt) between times t -  x /V  and t + d t -  x/V. Hence 

--~dt=dq~ -foV' F d x  d t e x p l - 2 F x ( t - - ~ - - ~ ) l q J ( t  (28) 

Here F dxdt  is the probability of nucleation of a droplet in the space 
interval ( x , x + d x )  during the time interval ( t - x / V , t + d t - x / V ) .  The 
exponential factor and the last factor in (28) ensure that other droplets do 
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not prevent a droplet transforming the origin from reaching it. Actually, 
the exponential factor is easily derived if we observe that it is equal to 

exp[-- 2Fx(t- x/V) ] exp(- 2Fx2/V) 

where the former factor is the probability that no nucleations have 
occurred in the interval (0, 2x) during the time interval (0, t-x/V), while 
the latter factor is the probability of the same during the time interval 
(t-x/V, t) in the untransformed part of the space interval (0, 2x). Finally, 
the last factor in the right-hand side of Eq. (28) ensures that droplets out- 
side the interval (0, 2x) do not stop a droplet transforming the origin 
before time t. 

Changing variables from x to s = t-x/V,  we recast Eq. (28) to 

~t = -FVqk(t) fo ds exp(FVs 2- FVt 2) (29) 

with solution 

~(t)=exp[-FV I~ ds, exp(-FVs~) I~'ds2exp(FVs2) ] (30) 

Let us now return to the original "two-sided" problem. As in the 
heterogeneous problem, the fraction q~(t) of untransformed material is 
again related to the same function ~b(t) by the constraint (23). It is now 
evident that the exact solution for q~(t) completely coincides with the 
analytical solution (17) of the mean-field equations in one dimension. One 
can further simplify (17) by introducing instead of s~ and sz the variables 
w and s2, with w = FV(s~ -s~) and performing the integration over s2. This 
yields 

�9 ( t ) = e x p  - dwexp(-w) sinh - j  - 1  (31) 

with T =  E F t  2. An asymptotic analysis of Eq. (31) shows that for T~> I the 
function ~( t )  decays as 

e - c /2  
q~(t) -~ - -  t - l (32) (4FV) 1/2 

where C is Euler's constant, C=0.577215 .... 
One can obtain an exact expression for the more complex correlation 

function ~u(t, to). We do not present a derivation of this result since it turned 
out that the final expression coincides with the mean-field answer (15). 
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Using the function ~v(t, to), one can also find the density of drople ts  of 
length L at t ime t: 

p(L, t) = ~-~ dt2 - ~  

where t2 is the time at which the drople t  was nucleated,  and tt is the 
time at which the drople t  reached length L and s topped its growth,  t~ = 
t2 + L/2 V. After some algebra  we finally obta in  

I ' 

with ~ ( t )  given by Eq. (31). 

(34) 

4. NUMERICAL SIMULATIONS 

Numerica l  s imulat ions of the growth kinetics were performed for both  
heterogeneous and homogeneous  nucleat ion models. In the case of 
homogeneous  model,  we also investigated the fractal proper t ies  of emerging 
patterns.  

To simulate the heterogeneous model  in two and three dimensions,  
a b o u t  10 3 nucleat ion sites were dis t r ibuted randomly  and s imulat ions were 

?(t) 
I 

............ 

~176176176176176 ~176176176176176176176176176176176176176176176176176176176176176176176176176176176 

D 
0 t i~e  2 

Fig. 1. The fraction of untransformed material ~(t) versus the dimensionless time t for the 
heterogeneous nucleation model. We present results for one-dimensional (the lower curve) 
two-dimensional (the middle pair of curves), and three-dimensional (the upper pair) systems. 
Mean-field result are shown by solid lines. Results of Monte Carlo simulations for d= 2 and 
3 and the exact solution for d= 1 are shown by dots. The unit of time for the d-dimensional 
heterogeneous nucleation model is equal to ?-I/aV-~. 
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repeated 100-150 times. For the homogeneous nucleation model, nuclea- 
tion sites have been generated with a constant rate and simulations 
proceeded until the overall number of nucleation sites reached 240,000. In 
all simulations we used the periodic boundary conditions. 

We evaluated the fraction of untransformed area ~( t )  and compared 
it with the mean-field predictions. For the heterogeneous nucleation model, 
numerical and mean-field results for 2D and 3D systems and exact results 
in one dimension are presented in Fig. 1. One can see that mean-field 
predictions differ quantitatively from exact and numerical results for all 
d =  1-3. For example, the jammed fraction of untransformed material 
~(oo) is equal to e - ~ =  0.367879 .... 0.660 + 0.005, and 0.82 + 0.01 for d =  1, 
2, and 3, respectively. On the other hand, the MFT predicts 0.306852 .... 
0.612 .... and 0.79 .... respectively. Notice that the heterogeneous nucleation 
model leads to less dense jammed coverage than the (continuum) RSA of 
disks, which gives the jammed fraction of uncovered material equal to 
0.252402... ( d = l )  and 0.4528+0.0002 (d=2) .  However, the kinetic 
behavior that emerges from the MFT and even from the simplified MFT 
(10)-(11) turns out to be in a good qualitative agreement with numerical 
results. 

Results for the homogeneous nucleation model are presented in Fig. 2. 
Simulations show that for the 2D system the fraction of untransformed 
area ~( t )  decays as a power law in the long-time limit. When the dimen- 
sionless time t [the time in the 2D homogeneous nucleation model is 
measured in units of (/~V2) -1/3"] varies from 100 up to the maximum 
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Fig. 2. The fraction of untransformed material ~(t) versus the dimensionless time t for the 
2D homogeneous nucleation model. The unit of time for the 2D homogeneous nucleation is 
equal to F-~/~V -:1~. 
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Fig. 3. The final pattern for the 2D heterogeneous nucleation model. 

simulation time 1600, we found that ~ ( t ) ~ t  -A, with A=0 .22+0 .01 .  
Notice that the simplified version of the MFT, Eq. (18), predicts in the 2D 
case a very close value of ,4, ,4 =e-3/2=0.223130... [see Eq. (20)]. 

The geometrical properties of emerging patterns are very different for 
the heterogeneous and homogeneous nucleation models. In Fig. 3, the typi- 
cal final pattern for the 2D heterogeneous nucleation model is shown. One 
can observe that the pattern is formed by separated "tree"-type clusters of 
2-10 particles. In Fig. 4 we plot the pattern for the 2D homogeneous 

Fig. 4. The pattern for the 2D homogeneous nucleation model at the dimensionless time 
t = 70. 
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nucleation model at time t = 70. Notice that the pattern looks like a self- 
similar fractal object. To study the fractal properties of arising 2D patterns 
we used the following procedure, t2'~ We computed an average number of 
nucleating sites ( n ( l ) )  in a box of size l ,  l. The centers of boxes were 
placed at some randomly chosen nucleation sites. Computations were 
performed for the pattern consisting of 240,000 particles, obtained at 
(dimensionless) time t =  1600. For each l, approximately 103 boxes were 
used. 

In Fig. 5 we plot the dependence of l n [ ( n ( l ) ) ]  versus In(l). One can 
see that at l'-" 0.6 ['the length in the 2D homogeneous nucleation model is 
measured in units of ( V/F)I/3] a crossover from the dependence ( n ( l ) )  ~ l'- 
to the dependence ( n ( l ) ) , , , l  z~r, with D r =  1.75, takes place. The former 
dependence characterizes the two-dimensional patterns, while the latter 
indicates the fractal structure of the pattern at sufficiently small sizes. The 
present procedure gives the same numerical value of fractal dimension 
D/-"-1.75 for all patterns arising at t>300 ,  thus emphasizing that the 
homogeneous nucleation model really evolves toward the fractal pattern. 
Such a conclusion is further supported by the fact that the homogeneous 
version of our touch-and-stop model is the generalized version of the 
random space-filling-bearing model. 115~ Structures arising in the latter 
model are surely fractalsJ 151 For a nonrandom space-filling-bearing model, 
e.g., for the Apoilonian packing, which is probably the first example of a 
fractal in science (it was introduced 200 BC by Apollonius of Perga), the 
fact that the patterns are fractals was proved rigorously ~-'-'1 and confirmed 
by precise numerical simulationsJ TM 

I n ( m , )  
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6 s l o p e = l .  7 5  ........ 

4 s l o p  

2 i i i i i i 

-ze -2 -,6 -, -oe o o e 
I n ( t . )  

Fig. 5. Plot of ln[(n(/))] versus In(l) at dimensionless time t= 1600 in the case of 2D 
homogeneous nucleation. The time and length are measured in the units (FV2) -~';~ and 
(V/F) j'~, respectively. The small-scale slope 1.75 indicates the fractal structure of the pattern. 
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5. C O N C L U S I O N S  

We have introduced a novel touch-and-stop model of growth in which 
droplets grow from nucleation sites and stop growing when two or more 
droplets touch. We have investigated two extreme cases of homogeneous 
and heterogeneous nucleation. The present model combines the properties 
of both nucleation-and-growth and RSA models. The homogeneous variant 
of our model in the limiting case of infinitely rapid growth turns into the 
random Apollonian packing. 

The growth kinetics as well as geometrical properties of emerging 
patterns have been examined. We have written the mean-field equations 
and solved them exactly in one dimension for both heterogeneous and 
homogeneous nucleation. For d >  1 we found approximate solutions of the 
mean-field equations in the case of heterogeneous nucleation. We found 
that the fraction of untransformed material qs(t) approaches the jammed 
state as qs ( t ) -  q~(oo)~exp[--~12d(Vt) a] and estimated the jammed frac- 
tion of uncovered volume q}MVX(oO)= 1 --dlog(2)/(2 d -  I). For the case of 
homogeneous nucleation we estimated the long-time decay of the fraction 
of untransformed material. We obtained exact solutions in one dimension 
for both heterogeneous and homogeneous cases. For two- and three-dimen- 
sional systems numerical simulations have been carried out. Mean-field 
predictions turn out to be in a good qualitative agreement with exact and 
numerical results. 

For the touch-and-stop model with heterogeneous nucleation we 
found that in arbitrary dimension the system reaches the jamming limit in 
which the fraction of untransformed material is equal to e - l =  0.367879... 
(d=  1), 0.660+0.005 (d=2) ,  0.82+0.01 (d=3) .  For the touch-and-stop 
model with homogeneous nucleation we have found numerically that the 
fractal dimension for the space-filling pattern is D r=  1.75. 
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